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Track Finding and Fitting The tracking algorithm has three major

steps: seed finding, outside-in pass,
and inside-out pass. A track seed is
found by locating hit pairs in R, phi

project inward. The track seed is
typically 5 hits.

it searching. previous tracking software.

: The new STAR track reconstruction software meets all the identified design goals:
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When the fitting is complete, the track is stored and used by the STAR vertex finder. If a
vertex is found, the tracker tests each track to see if the vertex is a viable point to include
in the track fit; if so, the vertex is added, the track is refit and labeled as a primary.




